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Nonseparable, Stationary Covariance
Functions for Space–Time Data

Tilmann Gneiting

Geostatistical approaches to spatiotemporal prediction in environmental science, climatology, meteorology, and related � elds rely on
appropriate covariance models. This article proposes general classes of nonseparable, stationary covariance functions for spatiotemporal
random processes. The constructions are directly in the space–time domain and do not depend on closed-form Fourier inversions. The
model parameters can be associated with the data’s spatial and temporal structures, respectively; and a covariance model with a readily
interpretable space–time interaction parameter is � tted to wind data from Ireland.

KEY WORDS: Completely monotone; Correlation function; Geostatistics; Kriging; Positive de� nite; Separable; Spatiotemporal.

1. INTRODUCTION

Random process models for space–time data play increas-
ingly important roles in various scienti� c disciplines; among
them are environmental science, agriculture, climatology,
meteorology, and hydrology. In the statistical literature, the
recent works of Handcock and Wallis (1994), Sølna and
Switzer (1996), Kyriakidis and Journel (1999), Christakos
(2000), Christakos, Hristopulos, and Bogaert (2000), Brown,
Diggle, Lord, and Young (2001), and Bourgine, Chilès, and
Watremez (2001), among others, point at the signi� cance of
the approach. To � x the idea, we consider the random process
model

Z4s3 t51 4s3 t5 2 òd � ò1

for a real-valued variable observed at the space–time coordi-
nates 4s13 t151 : : : 1 4sk3 tk5. The spatiotemporal variable might
stand for atmospheric pollutant concentrations, soil parame-
ters, temperature, or wind speed, to name but a few applica-
tions. More often than not, Z4s3 t5 will denote a transformed
variable or a residual � eld, rather than the original variable.
We refer to Kyriakidis and Journel (1999) for a comprehen-
sive review and bibliography.

A statistical analysis typically aims at the optimal prediction
of an unobserved part of the space–time process. Assuming
that Z4s3 t5 has � nite variance at all space–time coordinates
4s3 t5 2 òd � ò, the mean function Œ4s3 t5 D E4Z4s3 t55 and
the covariance between Z4s3 t5 and Z4s C h3 t C u5 exist. The
simple kriging predictor of Z4s03 t05 is the linear combination

Z ü 4s03 t05 D Œ4s03 t05 C
kX

iD1

ai4Z4si3 ti5 ƒ Œ4si3 ti55 (1)

of the observations which minimizes the mean squared pre-
diction error (Cressie 1993; Cressie and Huang 1999). The
covariance structure of the spatiotemporal process Z4s3 t5

determines the weights a11 : : : 1 ak of the individual observa-
tions in the predictor. It is then frequently assumed that the
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and are gratefully acknowledged.

covariance structure is stationary in space and time, so that
the covariance

Cov4Z4s3 t51Z4s C h3 t C u55 D C4h3 u51 4h3 u5 2 òd � ò1

depends on the space–time lag 4h3 u5 only. The function
C4h3 u5 is called the covariance function of the process,
and its restrictions C4h3 05 and C403u5 are purely spatial
and purely temporal covariance functions, respectively. The
assumption of stationarity in space and time needs to be
assessed from case to case. For instance, Rodriguez-Iturbe,
Marani, D’Odorico, and Rinaldo (1998, p. 3462) call sta-
tionarity “an important but reasonable hypothesis in the case
of rainfall,” whereas Guttorp, Meiring, and Sampson (1997,
pp. 407–408) dispute the assumption of temporal stationar-
ity for the ozone-level data of Carroll et al. (1997). Spatial
nonstationarity can often be dealt with by the space deforma-
tion approach of Sampson and Guttorp (1992), and we refer
to Sampson, Damian, and Guttorp (2001) for recent develop-
ments and applications.

Under the assumption of stationarity, the kriging predictor
(1) has variance

Var4Z ü 4s03 t055 D
kX

iD1

kX

jD1

aiaj C4si
ƒ sj3 ti

ƒ tj5 ¶ 00 (2)

This points at a fundamental requirement for any covariance
function: given any � nite system of space–time coordinates
4s13 t151 : : : 1 4sk3 tk5 2 òd � ò and coef� cients a11 : : : 1 ak

2 ò,
the double sum in (2) must be nonnegative. The property is
called positive de� niteness, and it is a necessary and suf� cient
condition for a covariance function. The celebrated theorem
of Bochner (1955, p. 58) states that a continuous function is
positive de� nite if and only if it is the Fourier transform of a
� nite, nonnegative measure.

To ensure that a valid covariance model is � tted to the data,
one usually considers a parametric family whose members
are known to be positive de� nite functions. Previous space–
time models of this form involve various separability assump-
tions with undesirable properties. For example, the space–time
covariance function might decompose into the sum or the
product of a purely spatial and a purely temporal covariance
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Gneiting: Stationary Covariance Functions for Space–Time Data 591

function. Functions of this type do not allow for space–time
interaction. A more detailed discussion of the shortcomings
of separable models can be found in Kyriakidis and Journel
(1999, pp. 664–666) or Cressie and Huang (1999, p. 1331).
Alternatively, if ˜¢˜ denotes the Euclidean norm, models of
the form

C4h3u5 D � a2
1
˜h˜2 C a2

2
—u—2

¢

have been � tted. Here, a1 and a2 are geometric anisotropy
factors between the space and time dimensions, and the covari-
ance function is constrained to the same form in space and
time. Cressie and Huang (1999) introduced classes of nonsep-
arable, stationary covariance functions that allow for space–
time interaction. Their approach is novel and powerful but
depends on Fourier transform pairs in òd. In other words,
it is restricted to a comparably small class of functions for
which a closed-form solution to the d-variate Fourier integral
is known.

In this article the approach of Cressie and Huang (1999) is
taken, but the aforementioned limitation is avoided and very
general classes of valid space–time covariance models are pro-
vided. Section 2 reviews a necessary and suf� cient condition
for positive de� niteness, and Section 3 gives a suf� cient con-
dition which does not rely on closed-form Fourier inversions.
Speci� cally, let �4t51 t ¶ 0, be any completely monotone func-
tion, such as those given in Table 1; let –4t51 t ¶ 0, be any
positive function with a completely monotone derivative, such
as those given in Table 2; and let ‘ 2 > 0. Then

C4h3u5D ‘ 2

–4—u—25d=2
�

³ ˜h˜2

–4—u—25

´
1 4h3u52òd � ò1 (3)

is a valid space–time covariance function. For instance, if the
� rst entry in Table 1 is chosen and the � rst function in Table 2,
then (3) provides the family

C4h3u5 D ‘ 2

4a—u—2� C 15‚d=2
exp

³
ƒ c˜h˜2ƒ

4a—u—2� C 15‚ƒ

´
1

4h3u5 2 òd � ò1 (4)

of space–time covariance functions, where a and c are nonneg-
ative scaling parameters of time and space, respectively. The
smoothness parameters � and ƒ take values in 40117, and ‘ 2 is
the variance of the spatiotemporal process. Figure 1 illustrates
the covariance function (4) for various values of � and ƒ,
where d D 21 a D 11 c D 11‚ D 1, and ‘ 2 D 1.

Table 1. Some Completely Monotone Functions �( t) , t ¶ 0

Functiona1 b Parameters

�(t) D exp(ƒctƒ ) c > 01 0 < ƒ µ 1
�(t) D (2�ƒ1â (�))ƒ1 (ct1=2)�K�(ct1=2) c > 01 � > 0
�(t) D (1 Cctƒ )ƒ� c > 01 0 < ƒ µ 11 � > 0
�(t) D 2�(exp(ct1=2) C exp(ƒct1=2))ƒ� c > 01 � > 0

a See Gneiting (1997) and the references therein for proofs of the complete monotonicity.
The functions have been standardized so that �(0) D 1.

b K� denotes a modi’ ed Bessel function of the second kind of order � (see Abramowitz and
Stegun 1972, pp. 374 ff.).

Table 2. Some Positive Functions –( t) , t ¶ 0, With a
Completely Monotone Derivative

Function ü Parameters

–(t) D (at� C1)‚ a > 01 0 < � µ 11 0 µ ‚ µ 1
–(t) D ln(at� C b)= ln(b) a > 01 b > 11 0 < � µ 1
–(t) D (at� Cb)=(b(at� C 1)) a > 01 0 < b µ 11 0 < � µ 1

ü The functions have been standardized so that – (0) D 1.

In Section 4 the Irish wind data of Haslett and Raftery
(1989) are used to illustrate strategies for physically meaning-
ful choices of �4¢5 and –4¢5 functions in a given situation.
Though the model (3) is in general nonseparable, we can asso-
ciate �4¢5 and –4¢5 with the data’s spatial structure and tem-
poral structure, respectively. We develop a correlation model
which derives from (4) and a nugget effect,

C4h3u —‚5D

8
>>>><
>>>>:

40901—u—10544 C15ƒ11 if hD01

096840901—u—10544 C15ƒ1

� exp

³
ƒ 000134˜h˜

40901—u—10544 C15‚=2

´
1 otherwise1

and depends on a readily interpretable space–time interac-
tion parameter ‚ 2 601 17. The case ‚ D 0 corresponds to a
separable model, in which the spatial correlations at different
temporal lags u are proportional to each other. As ‚ increases,
space–time interaction strengthens, and the spatial correlations
at nonzero temporal lags fall off less and less rapidly. The
weighted least squares estimate O‚ D 061 for the Irish wind data
falls well into the nonseparable range.

Section 5 returns to the theoretical discussion. The criterion
of Section 2 is applied to space–time covariance models pro-
posed by Carroll et al. (1997) and Cressie and Huang (1999),
and it will be seen that some of these are not valid covariance
functions. The article closes with a discussion of challenges in
geostatistical space–time analysis in Section 6. We revisit the
Irish wind data and address the modeling of covariance struc-
tures which are not fully symmetric, the latter meaning that

C4h3u5 D C4ƒh3u5 D C4h3 ƒu5 D C4ƒh3ƒu51

4h3u5 2 òd � ò0 (5)

The assumption (5) of full symmetry is often violated when
environmental, atmospheric, or oceanographic data are in� u-
enced by dynamic processes such as prevailing winds or
ocean currents. In this type of situation, physically mean-
ingful covariance models derive from the general idea of a
Lagrangian reference frame, which can be thought of as being
attached to and moving with the center of an air or water mass.

2. A CRITERION FOR POSITIVE DEFINITENESS

In this section, conditions for the validity of space–
time covariance functions are discussed. The terms valid
covariance model, covariance function, stationary covariance
function, and positive de� nite function will be used inter-
changeably. From a mathematical perspective, there is no dis-
tinction between the space–time domain òd � ò and the purely
spatial domain òdC1. In other words, the class of space–time
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592 Journal of the American Statistical Association, June 2002

Figure 1. Contour Plots of the Space–Time Covariance Function (13) Versus the Modulus of the Spatial Lag, ˜h˜, and the Temporal Lag, —u—.
The functions attain their maximum, C(0; 0) D 1, at the origin, and the contour lines are equidistant at .95, .9, : : : , .05. Upper left: � D 1=2, ƒ D 1=2.
Upper right: � D 1=2,ƒ D 1. Lower left: � D 1,ƒ D 1=2. Lower right: � D 1,ƒ D 1.

covariance functions in òd � ò coincides with the class of
spatial covariance functions in òdC1. Thus, the fundamental
physical difference between space and time dimensions needs
to be acknowledged through our notation and through the spe-
ci� c constructions below.

The well-known theorem of Bochner (1955, p. 58) states
that a continuous function C on òd � ò is positive de� nite if
and only if it is of the form

C4h3u5 D
ZZ

ei ×0hCi’u dF 4×3 ’51 4h3 u5 2 òd � ò1 (6)

with a spectral distribution function F . In other words, F is
the distribution function of a nonnegative, � nite measure on
òd � ò. An immediate consequence of the representation is
the inequality

—C4h3 u5— µ C403051 4h3u5 2 òd � ò1 (7)

and we will frequently return to (7) and its analogue for purely
spatial or purely temporal covariance functions,

—C4h5— µ C4051 h 2 òd0 (8)

If C4h3 u5 is integrable, the spectral distribution function F is
absolutely continuous, and Bochner’s representation (6) sim-
pli� es to

C4h3 u5 D
ZZ

ei ×0hCi’uf 4×3 ’5 d× d’1 4h3u5 2 òd � ò1

where f is a continuous, nonnegative, and integrable function.
The covariance function C and the spectral density function
f then form a Fourier transform pair, and

f4×3 ’5 D 42� 5ƒdƒ1
ZZ

eƒi h0×ƒiu’ C4h3u5 dh du0

The following criterion is based on these results and
Fubini’s theorem. It is due to Cressie and Huang (1999), where
it is given in a slightly different but equivalent form.

Theorem 1 (Cressie and Huang). A continuous, bounded,
symmetric, and integrable function C4h3 u5, de� ned on
òd � ò, is a space–time covariance function if and only if

C×4u5 D
Z

eƒih0× C4h3 u5 dh1 u 2 ò1

is a covariance function for almost all × 2 òd .

The proof of a generalized version of Theorem 1 is given in
the Appendix. Integrability is not an overly restrictive assump-
tion, since a continuous, bounded, and symmetric function
C4h3 u5 is positive de� nite if and only if, for every a > 0 and
b > 0, the integrable function exp4ƒa˜h˜ ƒ b—u—5 C4h3u5 is
positive de� nite. The latter holds, because products of positive
de� nite functions are positive de� nite. Under the assumption
(5) of full symmetry, all of the functions C×4u5 are real-valued
and symmetric. The theorem remains valid for symmetric but
not necessarily fully symmetric functions, although C×4u5 will
be complex-valued for some, or all, × 2 òd .

Cressie and Huang (1999) used Theorem 1 to construct
valid space–time covariance functions through closed-form
Fourier inversion of C×4u5 with respect to × 2 òd . In the fol-
lowing section, a criterion is given which is based on their
approach but does not depend on closed-form Fourier trans-
form pairs. In Section 5, Theorem 1 is used to disprove the
validity of previously proposed space–time models.

3. DIRECT CONSTRUCTIONS IN
THE SPACE–TIME DOMAIN

This section provides a simple suf� cient condition for posi-
tive de� niteness in òd � ò. The theorem allows us to construct
parametric families of spatiotemporal covariance functions
directly in the space–time domain. Any appeal to closed-form
Fourier inversion is avoided.

Recall that a continuous function �4t5, de� ned for t > 0
or t ¶ 0, is said to be completely monotone if it possesses
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Gneiting: Stationary Covariance Functions for Space–Time Data 593

derivatives � 4n5 of all orders and

4ƒ15n� 4n54t5 ¶ 0 4t > 01 n D 0111 21 : : : 50

From Bernstein’s theorem (Feller 1966, p. 439), the general
form of a completely monotone function �4t51 t > 0, is

�4t5 D
Z

601 ˆ5
exp4ƒrt5 dF 4r51 t > 01 (9)

where F is nondecreasing. Isotropic covariance functions and
completely monotone functions are closely related. Speci� -
cally, the isotropic function

C4h5 D �4˜h˜251 h 2 òd1

is a spatial covariance function for all dimensions d if and
only if �4t51 t ¶ 0, is completely monotone (Schoenberg 1938;
Cressie 1993, p. 86). Table 1 gives some completely mono-
tone functions, and the � rst two entries lead to the powered
exponential class,

C4h5 D ‘ 2 exp4ƒc˜h˜2ƒ51

and the Whittle–Matérn family,

C4h5 D ‘ 2 21ƒ�

â4�5
4c˜h˜5�K�4c˜h˜51 (10)

of isotropic covariance functions. Here, c is a nonnegative
scaling parameter, ƒ 2 401 17 and � > 0 are smoothness param-
eters, and ‘ 2 is the variance of the process.

Our key result can now be formulated. Its proof is based on
Theorem 1 and is deferred to the Appendix.

Theorem 2. Let �4t51 t ¶ 0, be a completely monotone
function, and let –4t51 t ¶ 0, be a positive function with a
completely monotone derivative. Then

C4h3u5 D ‘ 2

–4—u—25d=2
�

³ ˜h˜2

–4—u—25

´
1 4h3 u5 2 òd � ò1 (11)

is a space–time covariance function.

All of the examples of Cressie and Huang (1999) can be
written in the form of (11), except for the case c < 1 in their
Example 7, and their Examples 5 and 6, which are shown to be
wrong in Section 5 below. Though the models are nonsepara-
ble in general, �4t5 and –4t5 can be associated with the data’s
spatial and temporal structures, respectively. Table 1 provides
a range of possible choices of completely monotone functions
�4t5. Further examples and a discussion of the associated spa-
tial covariance functions can be found in Gneiting (1999). The
entries in Table 2 are obviously positive functions with a com-
pletely monotone derivative if � D 1. If � 2 401 17, the com-
plete monotonicity of the derivative follows from the chain
rule for differentiation together with two criteria of Feller
(1966, p. 441).

The following examples illustrate the breadth and simplicity
of our approach. Strategies for selecting appropriate �4t5 and
–4t5 functions in order to construct a meaningful parametric
family for a given situation will be discussed in Section 4.

Example 1. Putting �4t5 D exp4ƒctƒ5 and –4t5 D
4at� C 15‚ in (11) leads to the previously introduced paramet-
ric family (4). The product with the purely temporal covari-
ance function 4a—u—2� C 15ƒ„1 u 2 ò, then gives the class

C4h3u5 D ‘ 2

4a—u—2� C 15„C‚d=2
exp

³
ƒ c˜h˜2ƒ

4a—u—2� C 15‚ƒ

´
1

4h3 u5 2 òd � ò1 (12)

where a and c are nonnegative scaling parameters of time
and space, respectively; the smoothness parameters � and ƒ

take values in 401 17; ‚ 2 601171 „ ¶ 0, and ‘ 2 > 0. A sep-
arable covariance function is obtained when ‚ D 0. In prac-
tice, parameter values will frequently be � xed. For instance,
Figure 1 illustrates members of the class

C4h3u5 D 4—u—2� C 15ƒ1 exp

³
ƒ

˜h˜2ƒ

4—u—2� C 15ƒ

´
1

4h3u5 2 ò2 � ò1 (13)

to which the family (12) reduces when d D 2; a D 11 c D 1,
‚ D 11 „ D 0, and ‘ 2 D 1. The parameters � 2 40117 and
ƒ 2 40117 govern the smoothness of the purely temporal
and purely spatial covariance. Speci� cally, the spatial sec-
tions of the associated space–time process have fractal (Haus-
dorff) dimension d ƒƒ, and the temporal sections have fractal
dimension 1 ƒ � (see, for example, Adler 1981, chap. 8).

In many instances, a reparameterization of (12) is useful.
Speci� cally, replacing the exponent „C‚d=2 in (12) with ’ ¶
‚d=2 leads to the parametric family

C4h3u5 D ‘ 2

4a—u—2� C 15’
exp

³
ƒ c˜h˜2ƒ

4a—u—2� C 15‚ƒ

´
1

4h3 u5 2 òd � ò0 (14)

If ’ ¶ d=2 is � xed, a parametric family C4h3u — ‚5 is obtained
with an easily interpretable space–time interaction parameter
‚ 2 60117. The purely spatial covariance function C4h3 0 — ‚5

and the purely temporal covariance function C403u — ‚5
are independent of ‚. However, the case ‚ D 0 corresponds
to a separable model, in which the spatial correlations for dif-
ferent values of the temporal lag u are proportional to each
other. As ‚ increases, space–time interaction strengthens, and
the correlations at nonzero temporal lags fall off less and less
rapidly, as compared with the separable model. Figure 2 illus-
trates the covariance structures associated with the extremal
cases ‚ D 0 and ‚ D 1 in the family

C4h3u — ‚5 D 4—u— C 15ƒ1 exp

³
ƒ

˜h˜
4—u—C 15‚=2

´
1

4h3u5 2 ò2 � ò1 (15)

to which (14) reduces when d D 2; a D 11 c D 11 � D 1=2,
ƒ D 1=21 ’ D 1, and ‘ 2 D 1. The effect of the space–time
interaction parameter ‚ 2 60117 is clearly visible.

Example 2. With the second entry in Table 1 and the � rst
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594 Journal of the American Statistical Association, June 2002

Figure 2. The Space–Time Covariance Model (15) in the Extremal Cases ‚ D 0 (Separable Case, Left) and ‚ D 1 (Right). The horizontal axis
corresponds to oriented spatial distance along a line transect, and the graphs represent C(h; u) with temporal lags u equal to 1, 2, 3, and 4
(from top to bottom).

entry in Table 2, Equation (11) leads to the parametric family

C4h3u5 D ‘ 2

2�ƒ1â4�5 4a—u—2� C 15„C‚d=2

³
c˜h˜

4a—u—2� C 15‚=2

�́

� K�

³
c˜h˜

4a—u—2� C 15‚=2

´
1 4h3 u5 2 òd � ò1 (16)

of space–time covariance functions. Here a and c are non-
negative scaling parameters of time and space, respectively;
� 2 40117 is the smoothness parameter of time; � > 0 is the
smoothness parameter of space; ‚ 2 601171 „ ¶ 01‘ 2 > 0; and
K� is the modi� ed Bessel function of the second kind of order
� (see, for example, Abramowitz and Stegun 1972, pp. 374ff).
The purely temporal covariance is the corresponding limit as
˜h˜ ! 0,

C403u5 D ‘ 2

4a—u—2� C 15„C‚d=2
1 u 2 ò1

Figure 3. Contour Plots of the Space–Time Covariance Function (17) Versus the Modulus of the Spatial Lag, ˜h˜, and the Temporal Lag, —u—.
The functions attain their maximum, C( 0; 0) D 1, at the origin, and the contour lines are equidistant at .95, .9, : : : , .05. Upper left: � D 1=2, � D 1=2.
Upper right: � D 1=2,� D 3=2. Lower left: � D 1,� D 1=2. Lower right: � D 1,� D 3=2.

and the purely spatial covariance C4h305 is the Whittle–
Matérn class (10). If � D 1=2 the space–time covariance
function (16) reduces to

C4h3 u5 D ‘ 2

4a—u—2� C 15„C‚d=2
exp

³
ƒ c˜h˜

4a—u—2� C 15‚=2

´
1

which is the same as (12) with ƒ D 1=2; and if � D 3=2 we get

C4h3 u5 D ‘ 2

4a—u—2� C 15„C‚d=2

³
1C c˜h˜

4a—u—2� C 15‚=2

´

� exp

³
ƒ c˜h˜

4a—u—2� C 15‚=2

´
0

A separable covariance function is obtained when ‚ D 0.
Again, a subset of the parameters is usually held � xed.
Figure 3, for example, illustrates the effect of the parametersD
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Gneiting: Stationary Covariance Functions for Space–Time Data 595

� 2 401 17 and � > 0 in the family

C4h3u5 D 1

2�ƒ1â4�5 4—u—2� C 15

³ ˜h˜
4—u—2� C 151=2

�́

� K�

³ ˜h˜
4—u—2� C 151=2

´
1 4h3 u5 2 ò2 � ò1 (17)

to which the covariance model (16) reduces when d D 2;
a D 11 c D 11‚ D 11 „ D 0, and ‘ 2 D 1. Then � 2 40117 is
a temporal smoothness parameter, and the spatial smoothness
parameter � > 0 governs the differentiability of the purely
spatial covariance and spatial sections of the space–time pro-
cess. See Handcock and Wallis (1994) and Gneiting (1999)
for further comments on the Whittle–Matérn class. As in
the previous example, replacing the exponent „ C ‚d=2 with
’ ¶ d=2 in (16) leads to parametric covariance models with
a meaningful and easily interpretable space–time interaction
parameter ‚.

4. IRISH WIND DATA

This section illustrates strategies for selecting appropriate
�4t5 and –4t5 functions in the general model (11) in order to
construct a physically meaningful, parametric family of space–
time covariance functions for a given situation.

We consider the Irish wind data of Haslett and Raftery
(1989), which consist of daily averages of wind speeds at 11
synoptic meteorological stations in Ireland during the period
1961–1978. The data are available at Statlib, http://lib.stat.
cmu.edu/datasets/. Following Haslett and Raftery (1989), we
take a square root transformation to stabilize the variance
over both stations and time periods and to make the marginal
distributions approximately normal. Table 3 summarizes lati-
tude, longitude, elevation, and the mean of the square roots
of daily average wind speeds for the 11 meteorological sta-
tions. Generally, wind speeds decrease with distance from the
coastline. Figure 4 shows time series plots of the square roots
of daily mean wind speeds at Kilkenny and Malin Head in
1961. Kilkenny and Malin Head are the stations with the low-
est and highest mean wind speeds, respectively. Spatial and
temporal dependencies are clearly recognizable. As in Haslett

Table 3. The 11 Synoptic Meteorological Stations in
the Irish Wind Data Set

Stationa Latitudeb Longitudeb Elevationc Meand

Roche’s Point 51 480 N 8 150 W 41 2046
Valentia 51 560 N 10 150 W 14 2026
Kilkenny 52 400 N 7 160 W 64 1073
Shannon 52 420 N 8 550 W 20 2025
Birr 53 050 N 7 530 W 72 1082
Dublin 53 260 N 6 150 W 85 2017
Mullingar 53 320 N 7 220 W 104 2002
Claremorris 53 430 N 8 590 W 69 2001
Clones 54 110 N 7 140 W 89 2004
Belmullet 54 140 N 10 000 W 10 2053
Malin Head 55 220 N 7 200 W 25 2076

a Latitude, longitude, and elevation as posted by the Naval Atlantic Meteorology & Oceanog-
raphy Detachment at http://205.67.212.10/station.htm.

b In degrees and minutes.
c In meters.
d Mean of the square roots of daily mean wind speeds in meters per seconds.

Figure 4. Time Series Plot of the Square Roots of Daily Mean Wind
Speeds at Kilkenny (Solid Line) and Malin Head (Broken Line) in 1961.
Kilkenny and Malin Head are the stations with the lowest and highest
mean wind speeds, respectively.

and Raftery (1989), we estimate the seasonal effect by cal-
culating the average of the square roots of the daily means
over all years and stations for each day of the year and then
regress the result on a set of annual harmonics. Subtraction
of the estimated seasonal effect and the estimated spatially
varying mean, as given in the right-hand column of Table 3,
results in data hereinafter referred to as velocity measures.
Haslett and Raftery argue convincingly that a stationary model
for the velocity measures is an appropriate approximation. In
their article, the goal was estimation of the spatially varying
mean at a new site, where only a short run of data is avail-
able. This required a careful and innovative modeling of tem-
poral long-memory dependence, which was achieved through
ARMA modeling and fractional differencing.

Here, our goals in analyzing the velocity measures differ.
Long-memory effects are irrelevant in short-term prediction
problems, and we restrict our attention to the spatiotemporal
covariance structure for temporal lags up to 3 days, a range
which is crucial in many environmental applications. The cor-
relations for the velocity measures fall off rapidly in time,
and a meaningful distinction between separable and nonsepa-
rable covariance structures may not be feasible at higher lags.
Figure 5 illustrates the empirical space–time correlations at

Figure 5. Empirical Space–Time Correlations for Time Lag 0 (Upper
Left), 1 (Upper Right), 2 (Lower Left), and 3 (Lower Right) Days as
a Function of Spatial Distance in Kilometers. The solid lines illustrate
the extremal cases ‚ D 0 (lower line) and ‚ D 1 (upper line) for the
covariance function (21).
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temporal lags less than or equal to 3 days. Raftery, Haslett, and
McColl (1982) introduced this type of graph as a distance–
time autocorrelation plot. The upper left display shows the
purely spatial correlations for the 55 pairs of meteorological
stations as a function of distance in kilometers, along with the
spatial correlation model � tted by Haslett and Raftery (1989),

C4h305 D
(

11 if h D 01

0968exp4ƒ000134˜h˜51 otherwise1
(18)

where the usable range of spatial lags is ˜h˜ µ 450 km. This
can be written as a convex combination of a continuous, expo-
nential model and a nugget effect,

C04h5 D
(

11 if h D 01

01 otherwise0

The nugget effect allows for a discontinuity at the origin and
corresponds to measurement error and/or small-scale spatial
variability (see, for example, Cressie 1993, p. 58). For the Irish
wind data, either explanation is likely to apply, because of
possible instrument variations and the highly irregular nature
of wind speeds.

For the purely temporal covariance structure, a continuous
model with limited smoothness at the origin is a physically
reasonable compromise. On the one hand, wind speeds are
highly irregular and measurement error may be nonnegligible,
suggesting the presence of a nugget effect. On the other hand,
the data were obtained by temporal aggregation over 24 hours,
which tends to smooth out the discontinuities. Here we choose
the correlation function

C403 u5 D 40901—u—10544 C 15ƒ11 (19)

which � ts well the empirical temporal correlations observed at
the 11 stations; these average to .526, .267, and .179 at lags u
equal to 1, 2, and 3 days, respectively. Evidently, a wide range
of models of the form C403 u5 D 4a—u—2� C 15ƒ’ has limited
smoothness at the origin, is therefore physically justi� able,
and � ts the empirical correlations. Equation (19) was chosen
because it is easily embedded into a rich, parametric family,
given by (21), which includes both separable and nonsepara-
ble space–time covariance functions. Speci� cally, larger val-
ues of the parameter a in (14) allow for stronger space–time
interaction effects.

The product of the purely spatial correlation function (18)
and the purely temporal correlation function (19) is

C4h3u5 D

8
>><
>>:

40901—u—10544 C 15ƒ11 if h D 01

096840901—u—10544 C 15ƒ1

� exp4ƒ000134˜h˜51 otherwise0

(20)

The separable model (20) corresponds to the case ‚ D 0 in the
parametric family

C4h3u —‚5D

8
>>><
>>>:

40901—u—10544 C15ƒ11 if hD01

096840901—u—10544 C15ƒ1

� exp

³
ƒ 000134˜h˜

40901—u—10544 C15‚=2

´
1 otherwise1

(21)

where the usable range of space–time lags is given by ˜h˜ µ
450 km and —u— µ 3 days. Note that (21) can be written as a
convex combination of two permissible space–time covariance
functions and is therefore itself a permissible, positive de� -
nite function. The � rst component is the product of the purely
temporal covariance function (19) and a purely spatial nugget
effect; the second component is the continuous space–time
covariance function (14) with d D 2; a D 09011 c D 000134,
� D 07721 ƒ D 1=2, and ’ D 1. Evidently, (21) is a permissible
covariance model in ò2 � ò, although lags larger than 450 km
or 3 days were not used in the � tting procedure and are not
required in typical prediction problems. Figure 5 illustrates the
empirical spatiotemporal correlations along with the extremal
members of the family (21), corresponding to ‚ D 0 and ‚ D 1.
The case ‚ D 0 gives a separable model, in which the spatial
correlations for different values of the temporal lag u are pro-
portional to each other. As ‚ increases, correlations at nonzero
temporal lags fall off less and less rapidly than under the sep-
arable model.

Similar to the technique proposed by Cressie (1993, p. 96)
and Cressie and Huang (1999), a weighted-least-squares
method is used to estimate the space–time interaction param-
eter ‚ by minimizing

W4‚5 D
X
i1 j

3X

uD1

³ bC4hij3 u5 ƒ C4hij3u — ‚5

1 ƒ C4hij3 u — ‚5

2́

(22)

over ‚ 2 601 17. Here, hij is the spatial lag between stations i

and j1 bC4hij3u5 is the empirical correlation between the veloc-
ity measures at stations i and j and temporal lag u, and the
summation is over all ordered pairs of meteorological stations.
The weighted-least-squares estimate is O‚ D 061, indicating a
nonseparable covariance structure.

5. PREVIOUSLY PROPOSED MODELS

In this section, we apply Theorem 1 to covariance mod-
els proposed by Cressie and Huang (1999) and Carroll et al.
(1997).

Example 3. Cressie and Huang (1999) propose space–time
covariance models of the form

C4h3u5 D‘ 2 exp4ƒa„—u—„ ƒ b2˜h˜2 ƒ c—u—„˜h˜251 (23)

where h is the spatial lag in òd1 u is the temporal lag, a

and b are nonnegative scaling parameters, c ¶ 0 is a space–
time interaction parameter, and ‘ 2 > 0. Examples 5 and 6 of
Cressie and Huang correspond to the speci� c choices „ D 2
and „ D 1, respectively. Consider the general case with a posi-
tive shape parameter „. If c D 0, the model is separable, and it
is valid if and only if „ µ 2 or a D 0. In the nonseparable case,
c > 0, we proceed to prove that (23) is not a valid covariance
model for any „ > 0. In particular, the graphs in Figure 3b, c,
and d of Cressie and Huang (1999) do not show space–time
covariance functions.

We may assume that ‘ 2 D 1, and it suf� ces to consider the
case where h is scalar, because it corresponds to the restriction
of a space–time process in òd � ò to a space–time process
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Gneiting: Stationary Covariance Functions for Space–Time Data 597

in ò� ò. By Theorem 1, (23) is a covariance function if and
only if, for almost all × 2 ò,

C×4u5 D
Z ˆ

ƒˆ
eƒih× C4h3u5 dh

D � 1=24b2 C c—u—„5ƒ1=2 exp

³
ƒa„—u—„ ƒ ×2

44b2 C c—u—„5

´

is a covariance function. Straightforward calculations show
that if c > 0 and ×2 > 2b241 C 2a„b2cƒ15, then C×4u5 has
precisely three extremal points at u D 0 and u D u0, where

u„
0

D —2 ƒ 2b2

2c

if a D 0, and

u„
0

D 1
4a„c

4c2 C 4a„c ×251=2 ƒ 4c C 4a„b25
¢

if a > 0. Since C×4u5 is an even, continuous, and positive
function with limu! ˆ C×4u5 D 0, the extremal points at u0

are maxima. Thus C×4 u05 > C×405, contrary to inequal-
ity (8). We conclude that (23) is not a valid space–time covari-
ance function. The problem stems from an erroneous claim of
monotonicity and convexity for the function

�4×3u5D c
d=2
0

4—u—„ Cc05
d=2

exp

³
ƒ

˜×˜2

44—u—„ Cc05
C

˜×˜2

4c0

´
1 u>01

in Cressie and Huang (1999, pp. 1333, 1334).

Before proceeding, note that Example 7 of Cressie and
Huang (1999) involves a similar, erroneous claim of convexity
for the function

�4×3 u5 D 4u2 C 1 C 4u2 C c5˜×˜25ƒ�ƒd=241 C c˜×˜25�Cd=21

u > 00

However, it is easy to establish directly that if c ¶ 0 and � > 0
then �4×3u5 is a covariance function in u 2 ò, which is the
desired conclusion. Thus, in this case the model proposed by
Cressie and Huang remains valid.

Example 4. Carroll et al. (1997) consider correlation mod-
els of the form

C4h3u5 D exp4ƒa1
—u—ƒ a2u

25

� exp44ƒb0 ƒ b1—u— ƒ b2u
25˜h˜5 (24)

for space–time data on ozone levels in Harris county, Texas.
Here, h is the spatial lag in ò21 u is the temporal lag, and
a11 a21 b01 b1, and b2 are parameters to be � tted from the data.
Concerns about the validity of the model were raised in com-
ments by Cressie (1997) and Guttorp et al. (1997).

Inequality (7) supplies necessary conditions on the parame-
ters, because it holds for the correlation model (24) if and only
if a1 ¶ 01 a2 ¶ 01 b0 ¶ 01 b2 ¶ 0, and b1 ¶ ƒ2 4b0b25

1=2. The
parameter estimates in Table 1 of Carroll et al. (1997) satisfy
these constraints except for the years 1981, 1982, and 1987.

The violations for 1981 and 1987 were noted in Cressie’s com-
ment and in the reply by Carroll et al. (1997), respectively. We
return to this point below. If the necessary conditions hold and
the inequalities are strict, then (24) is an integrable function
and Theorem 1 applies. Thus, (24) is a covariance function if
and only if, for every × 2 ò2,

C×4u5 D
Z

eƒih0× C4h3 u5 dh

D 2�

³
1 C

˜×˜2

4b0
C b1

—u— C b2u
252

ƒ́3=2

� 4b0 C b1—u— C b2u
25ƒ2 exp4ƒa1—u—ƒ a2u

25

is a covariance function in u 2 ò. The parameter estimates
for 1980 in Table 1 of Carroll et al. (1997) are a1 D 01608,
a2

D 000511 b0
D 1083541 b1

D ƒ02942, and b2
D 00205 and

satisfy the aforementioned necessary conditions. It is easily
veri� ed that for the � tted values of the parameters, and in a
neighborhood of ˜×˜ D 11 C×4u5 is not a covariance func-
tion, because inequality (8) is violated. Thus, the � tted corre-
lation model is not positive de� nite on the space–time domain
ò2 � ò.

Two observations are relevant here. First, Carroll et al.
(1997) do not � t the correlation model (24) itself, but a con-
vex combination of the continuous covariance function (24)
and a nugget effect. A fundamental decomposition theorem
for positive de� nite functions (Sasvári 1994, Theorem 3.1.2)
implies that any practically relevant covariance function on
the Euclidean space òd � ò can be written as a convex com-
bination of a valid continuous covariance and a nugget effect.
In particular, the sum of a continuous function and a nugget
effect is positive de� nite if and only if the continuous part is
such.

Our second observation continues the discussion on the arti-
cle by Carroll et al. (1997). In their reply, the authors point out
that the covariance model is not � tted over òd � ò, but over a
bounded domain S � T , where S ò2 corresponds to the spa-
tial lags in Harris county, Texas, and T ò is a bounded and
discrete set of temporal lags. Carroll et al. (1997, p. 415) won-
der whether the covariance model “is positive de� nite over
the usable range of distances and time lags.” The question
relates to extension problems for positive de� nite functions,
which are discussed in Chapter 4 of Sasvári (1994). Nonethe-
less, results are sparse and not readily applicable, unless the
covariance model is isotropic (Gneiting and Sasvári 1999) or
the usable range of space–time lags is purely discrete. Other-
wise, the only approach to ensuring that a valid space–time
covariance is � tted is to use known classes of positive de� -
nite functions in òd � ò and restrict these to the spatiotempo-
ral lags of interest. We saw an example of such a strategy in
Section 4, when � tting the parametric model (21) to the Irish
wind data of Haslett and Raftery (1989).

6. DISCUSSION

Until recently, valid space–time covariance models were
mostly subject to separability assumptions or constrained to
the same parametric form in space and time. Cressie and
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Huang (1999) introduced general classes of nonseparable, sta-
tionary covariance functions that allow for space–time inter-
action and include separable models as a special case. The
present work provides a Fourier-free implementation of their
approach and enlarges the class of valid space–time covari-
ance functions at the modeler’s disposal. The constructions
in Section 3 provide � exible models in closed-form and with
parameters which have clear-cut interpretations. Using the
Irish wind data in Section 4 as an example, it was shown
how to develop covariance models with a readily interpretable
space–time interaction parameter. A nonseparable covariance
structure was identi� ed and estimated, in which the spatial
correlations at nonzero temporal lags decay more slowly than
would be expected under a separable model.

Physically based approaches might be crucial for fur-
ther progress in geostatistical space–time analysis. Christakos
(2000, p. 18), for example, argues that “in modern spatiotem-
poral geostatistics, the rational approach for choosing the
appropriate model from the data is by means of a theory that
represents the physical knowledge available.” Dynamic geo-
physical processes such as wind patterns or ocean currents
play key roles here.

To illustrate this type of situation, we return to the discus-
sion in Section 4 and to the Irish wind data of Haslett and
Raftery (1989). To � x the idea, consider the correlation coef-
� cients between the velocity measures at Kilkenny and Shan-
non, and Clones and Belmullet, respectively. For these pairs,
both stations have basically the same latitude (see Table 3),
so that the north–south component of the spatial separation
vector is negligible. The empirical correlations between the
western station at a given day and the eastern station 1 day
later are .53 and .52, respectively. However, the correlations
between the western station at a given day and the eastern sta-
tion 1 day earlier are .42 and .40, respectively. The deviation
from the assumption of full symmetry,

C4h3u5 D C4ƒh3u5 D C4h3ƒu5 D C4ƒh3ƒu51

4h3u5 2 òd � ò1

as de� ned previously in (5), is not surprising. Winds over
Ireland are predominantly westerly, so that velocity measures
propagate from west to east. Similar features might well occur
in other geophysical or environmental data sets, such as wind
speeds over the tropical western Paci� c Ocean, as analyzed by
Cressie and Huang (1999), or atmospheric pollutant concen-
trations in the Milan district, Italy, as recently modeled by De
Cesare, Myers, and Posa (2001).

The covariance models proposed by Cressie and Huang
(1999) and in the present article cannot capture features of
this type, since they are fully symmetric as de� ned above. The
recent approach of Brown, Kåresen, Roberts, and Tonellato
(2000) allows for covariance structures which are not fully
symmetric, but the resulting covariance models do not have
closed-form expressions, and it is not obvious how to proceed
in a given situation. In Kalman � lter techniques such as those
of Mardia, Goodall, Redfern, and Alonso (1998) and Wikle
and Cressie (1999), dynamic relationships can imply nonsep-
arable covariance structures. Another approach to modeling

dynamic environmental and atmospheric processes builds on
the general idea of a Lagrangian reference frame, which can
be thought of as being attached to and moving with the cen-
ter of an air or water mass. Lagrangian covariance structures
have indeed been discussed in the meteorological and hydro-
logical literature, and we refer to Cox and Isham (1988),
Bouttier (1993), Desroziers and Lafore (1993), Fischer, Joly,
and Lalaurette (1998), and May and Julien (1998), among oth-
ers. Cox and Isham (1988) show that if V is a random vector
in ò2, and G4r5 denotes the area of intersection of two disks
of common unit radius whose centers are a distance r apart,
then

C4h3u5 D EVG4˜h ƒ Vu˜51 4h3u5 2 ò2 � ò1 (25)

is a valid space–time covariance function. Evidently, (25) is
in general not fully symmetric. This model is easily extended
to the Euclidean space òd and general functions G, of which
Christakos (2000, p. 227) gives further examples. Conceptu-
ally, think of (25) as the covariance function of a spatiotempo-
ral random � eld, in which � xed air masses move with random
velocity V . Convex combinations of fully symmetric space–
time covariance models and models of the form (25) might
well provide improved � ts and improved prediction skill for
atmospheric and environmental space–time data sets. The gen-
eral idea is to perturb a fully symmetric model, say of the
form (11), so that the dynamic features are captured, too. For
the speci� cation of the random velocity V, various choices are
physically reasonable. The simplest case is a constant V D v,
which represents the mean wind vector as determined from
synoptic or local wind patterns, such as a westerly wind in the
case of Ireland. Research along these lines is currently under
development, and well-founded strategies for spatiotemporal
modeling remain in great demand.

APPENDIX

In this appendix, generalized versions of Theorem 1 and Theo-
rem 2, which apply to covariance functions de� ned on the Euclidean
space òk � òl are stated and proven. This is done because the proofs
are identical to those in the special case where k D d and l D 1, and
because the generalizations might lead to further applications. For
instance, a promising approach to the statistical analysis of deter-
ministic simulation experiments (Sacks, Welch, Mitchell, and Wynn
1989; Currin, Mitchell, Morris, and Ylvisaker 1991) relies on analyt-
ical covariance models in òn where n, the number of parameters in a
simulation experiment, is often large. In this situation, the parameter
set might split into two groups of size k and l, respectively, calling
for a covariance model in òk � òl . Returning to space–time prob-
lems, we see from Eq. (A.3) with k D 1 and l D d that under the
conditions of Theorem 2,

C4h3u5D ‘ 2

–4˜h˜251=2
�

³ —u—2

–4˜h˜25

´
1 4h3u52òd � ò1 (A.1)

is a valid space–time covariance function. Note the symmetry
between (11) and (A.1): now –4t5 and �4t5 are associated with the
data’s spatial structure and temporal structure, respectively.

Theorem 1 (Generalized). A continuous, bounded, symmetric,
and integrable function C4h3 u5, de� ned on òk � òl, is a covariance
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Gneiting: Stationary Covariance Functions for Space–Time Data 599

function if and only if

C×4u5 D
Z

eƒih0
× C4h3u5 dh1 u 2 òl1 (A.2)

is a covariance function for almost all × 2 òk .

Proof. Notice that C4h3 u5 is square-integrableover òk � òl, and
that its Fourier transform f 4×3Ò5 is a real-valued, continuous, and
symmetric function. Furthermore, for all × 2 òk , C×4u5 is continu-
ous and integrable, because C4h3u5 is integrable and uniformly con-
tinuous on compact sets, and

­­­
Z

C×4u5du
­­­µ

ZZ
—C4h3 u5— dh du < ˆ0

From Bochner’s theorem and Fourier inversion, C4h3u5 is positive
de� nite if and only if

f 4×3Ò5 D 42� 5ƒkƒl
ZZ

eƒih0
×ƒiÒ

0u C4h3u5dh du

D 42� 5ƒkƒl
Z

eƒiÒ
0u C×4u5 du

is nonnegative everywhere.
Now suppose that C×4u5 is a covariance function for almost all

× 2 òk . Since C×4u5 is continuous and integrable, we � nd that
f 4×3 Ò5 ¶ 0 almost everywhere on òk � òl . Thus, the continuous
function f 4×3Ò5 is nonnegative everywhere. Conversely, if C4h3u5

is a covariance function, then f 4×3Ò5 is nonnegative and integrable,
by Bochner’s theorem applied in òk � òl . By Fubini’s theorem,
f 4×3 Ò5 is also integrable as a function of Ò 2 òl , for almost all
× 2 òk . Thus, C×4u5 is a covariance function for almost all × 2 òk ,
by Bochner’s theorem applied in òl. The proof is complete.

Theorem 2 (Generalized). Let k and l be nonnegative integers,
and let ‘ 2 > 0. Suppose that �4t51 t ¶ 0, is a completely monotone
function, and let –4t51 t ¶ 0, be a positive function with a completely
monotone derivative. Then

C4h3 u5 D ‘ 2

–4˜u˜25k=2
�

³ ˜h˜2

–4˜u˜25

´
1 4h3u5 2 òk � òl1 (A.3)

is a covariance function.

Proof. We assume initially that the isotropic function
�4˜h˜251h 2 òk , is integrable. Then

C4h3u5 D exp4ƒa˜u˜25
‘ 2

–4˜u˜25k=2
�

³ ˜h˜2

–4˜u˜25

´
1 (A.4)

which differs from (A.3) by the extra � rst factor, is integrable over
4h3u5 2 òk � òl , for all a > 0. By Theorem 1, (A.4) is a covariance
function if and only if the associated function (A.2) is a covariance
function, for almost all × 2 òk . Notice that the nondecreasing func-
tion F in Bernstein’s representation (9) for � is bounded and con-
tinuous at zero, because � is bounded and limt!ˆ �4t5 D 0 by the
integrability assumption. From (9) and Fubini’s theorem,

C×4u5 D
Z

eƒih0
× C4h3u5dh

D exp4ƒa˜u˜25
‘ 2

–4˜u˜25k=2

�
ZZ

401ˆ5
eƒih0

× exp

³
ƒ r

–4˜u˜25
˜h˜2

´
dF4r5dh

D‘ 2� k=2 exp4ƒa˜u˜25

�
Z

401ˆ5
exp

³
ƒ

˜×˜2

4r
–4˜u˜25

´
1

r k=2
dF 4r50

Putting × D 0 and u D 0, we see that

Z

401 ˆ5

1
r k=2

dF 4r5 D 1
‘ 2� k=2

C0405

is � nite, because C04u51u 2 òl, is a continuous function. Therefore
we may write

C×4u5 D �×4˜u˜251 u 2 òk1

where

�×4t5 D‘ 2� k=2 exp4ƒat5
Z

401 ˆ5
exp4ƒs –4t55dG×4s51 t ¶ 01

with a certain nondecreasing,bounded function G× . From Bernstein’s
theorem and the two criteria for complete monotonicity on p. 441
of Feller (1966), �×4t51 t ¶ 0, is a completely monotone function,
for all × 2 òk . By Schoenberg’s theorem (Schoenberg 1938; Cressie
1993, p. 86), C×4u5 is a covariance function for all × 2 òk . It fol-
lows from Theorem 1 that (A.4) is a covariance function. Now (A.4)
converges to (A.3) as a ! 0, and since limits of covariance functions
are covariance functions, (A.3) is a covariance function.

Another approximation argument is needed to dispose of our ini-
tial assumption of integrability. Given a completely monotone func-
tion �4t51 t ¶ 0, and a positive number b, the product exp4ƒbt5 �4t5,
t ¶ 0, is completely monotone, and exp4ƒb˜h2˜5 �4˜h2˜5 is inte-
grable over h 2 òk . Thus,

C4h3 u5 D ‘ 2

–4˜u˜25k=2
exp

³
ƒ b˜h˜2

–4˜u˜25

´
�

³ ˜h˜2

–4˜u˜25

´
(A.5)

is a covariance function on òk � òl by the above. Since (A.3) is the
limit of (A.5) as b ! 0, the proof is complete.

[Received February 2000. Revised May 2001.]
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